3/1/2014 – Everything Antarctica

Michelle writes:

The past week has been full of quintessential Antarctic experiences. I want to highlight these in the blog today because I actually spend a lot of time in the lab rather than outside on deck, so these experiences have been very special.

1-P1010681

1. Penguins: we got up close to a pair of Emperor penguins the other day as a large piece of sea ice floated by. They stood by watching the boat, craning their necks every so often like they were trying to get a better look at the giant, orange thing in front of them. My favorite thing about Emperor penguins is how they walk: it’s a slow shuffle as they move an entire side of their body in one motion. By contrast, I always see the little Adelie penguins run in spurts. They usually hold their wings out behind them and run so far forward it looks like they are going to trip over their little feet.

1-emperor-1 2. Blizzards: Antarctic storms are world-renowned as ferocious white-outs with howling winds and temperatures many tens of degrees below 0°C. We have hit a few storms throughout our cruise, but a couple days ago, we stepped out on deck to flying snow that stung our faces and temperatures so cold we could only stand to be outside for a few minutes. Some sea ice was piled higher than the back deck and I couldn’t see more than about 50 yards in any direction. This particular storm was located north of the ship, but it had pushed much of the sea ice south toward us. We are still trying to break through into open water. It’s slow going, but the captain and mates are working hard to get us through and ship speed should pick up soon. Continue reading

Advertisements

2/23/2014 – Palmer Fever

Michelle writes:

I have never been affected by island fever. When I was going to school in Hawaii, people used to ask me, “Don’t you get island fever?” when I got back from a semester at UH-Hilo. “No, although sometimes I do get Hilo fever,” I would respond, referring to the fact that it was hard for me to get out of Hilo due to school, work, and no car. I understand why people would feel trapped on an island but it just never phased me.

What could be more fun than recovering Eocene/Oligocene boundary rocks?

What could be more fun than recovering Eocene/Oligocene boundary rocks?

I think about that question now that I have been on a ship for close to a month. I guess one would call it Palmer Fever. And the answer is “No, I don’t get Palmer Fever.” I think the reason is we stay busy everyday. The last two days have been up-on-your-feet-for-12-hours kind of days. By the end, everyone is pretty exhausted. However, there are slow days and we have free time when we come off shift. So what do we do? We have found fun and quirky ways to keep busy, on and off shift.

While passing time on a slow shift, most people read, write papers, or help another group with their sampling. Occasionally, someone will post a crossword and passers-by will stop to fill out a word or phrase on their way between jobs. For the students, downtime during shift is a perfect time to write a blog, check email, or peruse papers that our PIs have assigned.

During our time off, there are a surprising number of activities to keep a person busy:

Game Face status: on

Game Face status: on

The natural evolution of the Seasickness Competition

The natural evolution of the Seasickness Competition

  • Sleeping: we are usually falling over by 3AM after a noon to midnight shift (for the day shifters). This counts as fun for a bunch of students.
  • Cornhole tournament: there has been a fair amount of smack-talk and off-hours practicing as people are starting to get competitive.
  • Movie night: each night after a day shift, a couple of the ship’s mates host a movie in the lounge, which they call Action Theater. Action Theater usually involves comedies/action flicks and high-tech Nerf guns.
  • Working out: In addition to individual workouts, we have a sign up sheet for pushups/sit ups. Every time an instrument goes into or comes out of the water, you have to do however many pushups/sit ups you signed up for. I signed up for 10 push ups, so if a core is deployed I have to do 20: 10 for in the water, 10 for out of the water. I think I have done about 450 pushups, with about 100 to catch up on.
  • Galley socializing: On a busy day, like today, dinner is a short affair. However, after shift is done, a group will often spend 45 minutes in the galley just hanging out and chatting.

We also love to celebrate: Continue reading

2/15/2014 – Playing in the Mud

(and the Grease, and the Salt Water)

Michelle writes:

1-IMG_7135The past week has been a busy one. We have secured 3 full kasten cores, 1 jumbo gravity core and 1 jumbo piston core (with 1 accompanying trigger core). A kasten core has a rectangular barrel that is deployed via gravity. It penetrates 2-3 meters into the sediment and can be opened on the ship so we can describe the stratigraphy, take photos, and collect samples. Each kasten core takes about 12 hours to process, depending on the length. First Gene has to describe the core (color, layers, sediment composition), then Tasha will take pictures. After that, someone on shift puts on the lab coat and nitrile gloves and takes samples for DNA/RNA.

1-IMG_7183

The next round of sampling includes taking sediment for organic geochemical analysis and foraminifer microfossils (fossils of calcareous single-celled animals). These samples will be used for a suite of geochemical analyses to determine past temperature, productivity, and oxygen content, among other things. While geochem and foram sampling are happening on one side of the core, another person is sampling for physical properties on the other side. If there is enough mud left, we will also take pea-size samples for diatom analysis and 5-cm interval samples for radiocarbon. Believe it or not, the first layer of sampling on a 2-3 m core takes 7-8 hours with planning, putting together the core barrel, sampling, cleaning sponges and utensils, labeling bags, and sample storage/inventory. These are the days when the marine geology group spends 12 hours on their feet. Continue reading

2/10/2014 – Entering Totten

Michelle writes:

1-P1010313We are just about 6 nautical miles from the edge of the Totten ice band and should be able to break through the sea ice into some ice-free water adjacent to the coast by this evening. Our watch shifts now demand a higher level of attention because we are in un-chartered waters; there is no pre-existing data from this area. Every seafloor feature that shows up on the screen on the Knudsen bathymetric profiler has never been seen before. NBP14-02 will be the first cruise to survey the seafloor and collect geological and physical measurements of the sediment and ocean currents.

Now, all planning is in overdrive. At the transition between shifts, there is usually a PI meeting at the navigation table or in the Chief Scientist’s room. These meetings include deciding which sites to hit first, which group will run their instruments and in what order. As we steam toward Totten Glacier, the researchers running the seismic instruments are planning their lines (the distance between two waypoints on which they will make their measurements).

1-DSC_1597

These images are very important because they will be high-resolution images of the ocean bottom and the sub-bottom down to about 400 m. That is tens of millions of years of a sediment record in one picture. The seismic images show the various layers and points of contact between geologic periods. For example, we may be able to see the boundary between the Eocene and Oligocene. Continue reading

2/4/2014 – The Method to the Madness

Michelle writes:

There is so much planning that goes into making these research cruises a reality.  Multiple conference calls, pre-cruise meetings, travel and lodging logistics, coring and site survey selection- all of these things spread over years. All that planning gets us on the ship … and then we have to adjust many well-laid ideas to suit the environment. Amelia tells us that as a PI (Principal Investigator), it’s not enough to have a Plan B; you have to have Plans A through Z.

So far, we're on Plan F

So far, we’re on Plan F

Weather and ice conditions change so fast down here, so all the PIs need to be flexible with their own sampling strategies as well as accommodate each others’ scientific objectives. That means when we finally get into the ice, plans change; the decisions that dictate those plans are carefully weighed and executed. Going into this cruise, I knew there must be a whole list of reasons for choosing a core site. Now, 8 days in, I am finding out just how many factors contribute to our PIs’ decision and I am astounded at their combined knowledge. Continue reading

1/27/2014 – A Long Way Here and a Long Way to Go

Michelle writes: 

This is only my first blog post and barely my fourth day in Hobart, Tasmania, but I already feel like I left home ages ago. Perhaps this is because it took about 30 hours of traveling to get from Florida to Tasmania, or maybe because I have been busy every day. Or maybe I am finally beginning to realize how much work we have to do and the weeks are stretching out endlessly in front of me.

The Palmer still working on her tan

The Palmer still working on her tan

That sounds like I am dreading this cruise- quite the opposite! I am so excited to finally be here and have the opportunity to contribute to the understanding of changing ice dynamics in East Antarctica. I think the reason I feel so removed from what I consider “normal life” is because the cruise is really a whole different ballgame. First off, it spans 46 days. It will take 7 days just to get down to Antarctica, and then there is a solid month of work surveying and sampling the continental shelf from the George V Shelf up to the Totten and Shackleton glaciers. Second, our study area is so isolated and the elements are so extreme, it’s enough to make anyone feel slightly anxious. And third, this cruise has been in the works for many years, with many smart and experienced scientists spearheading the effort. Continue reading

11/9/2013 – Slow Going Through the Sea Ice

Michelle writes:

One aspect of science that I particularly enjoy is that my work never runs at the same pace. Sometimes I am frantically working 10-hour days, skipping weekends and staying up late to make a deadline. Other times I spend a few hours in my office, then head home to spend a couple leisurely hours reading papers. That seems to apply to ship work as well.  This past week has been work, work, work during our 12-hour shifts. Now, we are at a standstill… literally. Under normal conditions, the ship would have pulled into Palmer Station to transfer gear and crew and we would be busy putting stuff away and preparing for our Drake crossing back to South America. What’s stopping us? Sea ice.

"Dang it. I knew we shoulda brought the chains."

“Dang it. I knew we shoulda brought the chains.”

Sea ice is many things: a habitat, an insulator, a reflective surface (and in our case, a hindrance). It is a habitat for diatoms (tiny photosynthetic organisms) that live in the saline channels within the ice. These algae are the base of the food chain for a highly productive ecosystem. All those animals we associate with Antarctica–leopard seals, penguins, albatrosses, orcas–none of these would exist if not for the diatoms that turn that beautiful white ice to brown.

Hey, that greenish brown junk really looks like po ... tentially important scientific material!

Hey, that greenish brown junk really looks like po … tentially important scientific material!

The diatoms are important to a paleoceanographer’s line of work because they contain the clues to Antarctica’s paleo-environment (“paleo” meaning old, or ancient, especially relating to the geologic past). Like us, these organisms have a type of skin called a membrane. Their membrane is much simpler than ours, but it has a specific structure. This structure contains fats, or lipids, and there are certain lipids that are specific to the diatoms living in the sea ice. Continue reading